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1 Vector Spaces

1.1 Definitions

For this lecture course, F will always be field.

Definition. (Vector Space) A F-vector space (or a vector space over FF) is an abelian
group (V,+,0) equipped with a function

FxV >V
(\v) =

which we call scalar multiplication such that Yv,w € V,VA, u € F
() (A+p)v = Av+ o

(i) AMv+w) = v+ Aw

(iii) M) = (oo
)1

(iv) lv=v-1=w

Remember that 0 and 0 are not the same thing. 0 is an element in the field F and O is the
additive identity in V.

For an example consider F™ n-dimensional column vectors with entries in F. We also have the
example of a vector space C™ which is a complex vector space, but also a real vector space (taking
either C or R as the underlying scalar field).

We also can see that M, x,(F) form a vector space with m rows and n columns.
For any non-empty set X, we denote FX as the space of functions from X to F equipped with
operations such that:

f+gis given by (f +g)(z) = f(z) + g(x)
Af is given by (Af)(x) = Af(z)

Proposition. For all v € V' we have that 0-v =0 and (—1) - v = —v where —v denotes
the additive inverse of v.

Proof. Trivial.

Definition. (Subspace) A subspace of a F-vector space V is a subset U C V which is a
F-vector space itself under the same operations as V. Equivalently, (U, +) is a subgroup
of (V,+) and VA € F, Vu € U we have that Au € U.

Remark. Axioms (i)-(iv) are always automatically inherited into all subspaces.

Proposition. (Subspace test) Let V be a F-vector space and U C V then U is a subspace
of V if and only if,

(i) U is nonempty.

(if) VA € F and Yu,w € U we have that u + Aw € U.



Proof. If U is a subspace then U satisfies (i) and (ii) since it contains 0 and is closed. Conversely
suppose that U C V satisfies (i) and (ii). Taking A = —1 so Yu,w € V, u—w € U hence (U, +) is
a subgroup of (V,+) by the subgroup test. Finally taking v = 0 so we have that Vw € U,VA € F
we have that Aw € U. So U is a subspace of V. O

We notate U by U < V.
For some examples
(i)
x

y|l eR3:z+y+2=1tp CR?
z

for fixed ¢t € R is a subspace of R? iff t = 0.
(ii) Take R as all the functions from R to R then the set of continuous functions is a subspace.

(iii) Also we have that C°°(R), the set of infintely differentiable functions from R to R is a
subspace of R¥ and the subspace of continuous functions.

(iv) A further subspace of all of those subspaces is the set of polynomial functions.
Lemma. For U, W <V we have that UNW < V.

Proof. We’ll use the subspace test. Both U, W are subspaces so they contain 0 hence 0 € UNW
so U N W is nonempty. Secondly take z,y € UNW with A € F. Then U <V and z,y € U
so « + Ay € U. Similarly with W so  + Ay € W hence we have that x + Ay € U N W hence
Unw<vVv O

Remark. This does not apply for subspaces, in fact from IA Groups, we know it doesn’t even
hold for the underlying abelian group.

Definition. (Subspace sum) For U, W < V| the subspace sum of U, W is

U+W={ut+w:uelUweW}

Lemma. If UW <V then U+ W < V.

Proof. Simple application of the subspace test.

Remark. U + W is the smallest subgroup of U, W in terms of inclusion, i.e. if K is such that
UCKand W C K thenU +W C K.

1.2 Linear maps, isomorphisms, and quotients

Definition. (Linear map) For V', W F-vector spaces. A linear map from V to W is a
group homomorphism, ¢, from (V,+) to (W, +) such that Vv € V'

p(Av) = Ap(v)



Equivalently to show any function o : V' — W is a linear map we just need to show that

Vu,w € V, Y\ € F we have
a(u+ Aw) = alu) + Aa(w).

For some examples of linear maps

(i) V=F"W =F" A € Mpxn(F). Then let a: V. — W be given by a(v) = Av. Then « is

linear.
(ii) a: C®(R) — C*(R) defined by taking the derivative.
(iii) a: C(R) — R defined by taking the integral from 0 to 1.
(iv) X any nonempty set, 29 € X,
a:F¥ > F
f = f(zo)
(v) For any V,W the identity mapping from V to V is linear and so is the zero map from V
to W.
(vi) The composition of two linear maps is linear.

(vii) For a non-example squaring in R is not linear. Similiarly adding constants is not linear,
since linear maps preserve the zero vector.

Definition. (Isomorphism) A linear map «: V — W is an isomorphism if it is bijective.
We say that V' and W are isomorphic, if there exists an isomorphism from V — W and

denote this by V =2 .

An example is the vector space V = F* and W = Moy (F) we can define the map

a: VW

(e 4

QL O T

Then « is an isomorphism.

Proposition. If a : V — W is an isomorphism then a=! : W — V is also an isomorph-
ism.

1 1

Proof. Clearly a™" is a bijection. We need to prove that a™ is linear. Take wi,wy € W and

A €F. So we can write w; = a(v;) for ¢ = 1,2. Then

a Hwy 4+ Mwg) = aHa(vr) + Aa(vs)) = a Ha(vy + Ma)) = v1 + Avg = a”H(wr) + Ao~ H(wy)

1

. Hence o~ ! is linear, so a~! is an isomorphism. O



Definition. (Kernal) Let V, W be F-vector spaces. Then the kernal of the linear map
a:V—=>Wis
ker(a) ={v eV :alw) =0y} CV

Definition. (Image) Let V, W be F-vector spaces. Then the image of a linear map « :
V= Wis
im(a) ={a):veV}CW

Lemma. For a linear map a : V. — W the following hold.
(i) kera <V and ima < W
(ii) « is surjective if and only if ima = W
(iii) « is injective if and only if ker « = {0y }

Proof. 0y + 0y = Oy, so applying « to both sides any using the fact that « is linear gives that
a(0y) = Ow . So ker «v is nonempty. The rest of the proof is a simple application of the subspace
test.

The second statement is immediate from the definition.

For the final statement suppose « injective. Suppose v € kera. Then a(v) = Oy = «a(0,) so
v = Oy by injectivity. Hence ker « is trivial. Conversely suppose that ker « = {0y} Let u,v € V
and suppose that a(u) = a(v). The a(u — v) = Ow, so u — v € ker «, 80 u = v. O

For V' a F-vector space, W <V write

%:{U-FW:UEV}

as the left cosets of W in V. Recall that two cosets v + V and u + W are the same coset if and
only if v —u € W.

Proposition. V/W is an F-vector space under operations

(u+W)+@W+W)=(u+v)+W
Av+W) =)+ W
We call V/W the quotient space of V' by W.
Proof. The proof is long and requires a lot of vector space axioms so we’ll just sketch out the

proof.
We check that operations are well-defined, so for u,uw,v,v € V and A € F if

u+W=a+W, v+W=0+W

then
(u+v)+W=((Tu+w)+W
and
M)+ W = (A\u)+ W
The vector space axioms are inherited from V. O



Proposition. (Quotient map) The function wy : V — % called a quotient map is given
by
mw) =v+ W

is a well-defined, surjective, linear map with ker 7y = W.

Proof. Surjectivity is clear. For linearity let u,v € V and A € F. Then

mw(u+Av) = (u+ Av) + W
=w+W)+M+W)
=@w+W)+AXv+W)
= mw (u) + Amw (v)

For v € V, we have that v € kermy <= 7w (v) = Oy/w. So v+ W = 0y + W so finally
v=v—0yeW. ]

Theorem. (First isomorphism theorem) Let V, W be F-vector spaces and « : V. — W
linear. Then there is an isomorphism

: — ima«
ker o

given by a(v + ker a) = a(v)

Proof. For u,v € V,
u+K=v=K <= u—-veK <<= alu—v)=0p <= alu)=a(v) <= a(u+kera)==a(v+ kera)

The forward direction shows that @ is well-defined, and the converse shows that @ is injective.
For surjectivity given w € im «, there exists some v € V s.t. w = a(v). Then w = @(v + ker ).
Finally for linearity given u,v € V, A € F,

a((u+kera)+ A(v+kera)) = a((u+ \v) + ker @)
= a(u+ A\v)
= a(u) + Aa(v)
= a(u + ker @) + MA@ (v + ker «)
So @ is linear hence is an isomorphism O
1.3 Basis

Definition. (Span) Let V be a F-vector space. Then the span of some subset S C V is
(8) = {Z)\S-S:)\S e]F}
ses

where > denotes finite sums. An expression the form above is called a linear combination
of S.



We say that S spans V if (S) =V

Definition. (Finite-dimensional) For a vector space V we say that it is finite-dimensional
if there exists a finite spanning set.
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