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1 Vector Spaces

1.1 Definitions

For this lecture course, F will always be field.

Definition. (Vector Space) A F-vector space (or a vector space over F) is an abelian
group (V,+,0) equipped with a function

F× V → V

(λ, v) → v

which we call scalar multiplication such that ∀v, w ∈ V,∀λ, µ ∈ F
(i) (λ+ µ)v = λv + µv
(ii) λ(v + w) = λv + λw
(iii) λ(µv) = (λµ)v
(iv) 1 · v = v · 1 = v

Remember that 0 and 0 are not the same thing. 0 is an element in the field F and 0 is the
additive identity in V .

For an example consider Fn n-dimensional column vectors with entries in F. We also have the
example of a vector space Cn which is a complex vector space, but also a real vector space (taking
either C or R as the underlying scalar field).

We also can see that Mm×n(F) form a vector space with m rows and n columns.
For any non-empty set X, we denote FX as the space of functions from X to F equipped with
operations such that:

f + g is given by (f + g)(x) = f(x) + g(x)

λf is given by (λf)(x) = λf(x)

Proposition. For all v ∈ V we have that 0 · v = 0 and (−1) · v = −v where −v denotes
the additive inverse of v.

Proof. Trivial.

Definition. (Subspace) A subspace of a F-vector space V is a subset U ⊆ V which is a
F-vector space itself under the same operations as V . Equivalently, (U,+) is a subgroup
of (V,+) and ∀λ ∈ F, ∀u ∈ U we have that λu ∈ U .

Remark. Axioms (i)-(iv) are always automatically inherited into all subspaces.

Proposition. (Subspace test) Let V be a F-vector space and U ⊆ V then U is a subspace
of V if and only if,
(i) U is nonempty.
(ii) ∀λ ∈ F and ∀u,w ∈ U we have that u+ λw ∈ U .
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Proof. If U is a subspace then U satisfies (i) and (ii) since it contains 0 and is closed. Conversely
suppose that U ⊆ V satisfies (i) and (ii). Taking λ = −1 so ∀u,w ∈ V , u−w ∈ U hence (U,+) is
a subgroup of (V,+) by the subgroup test. Finally taking u = 0 so we have that ∀w ∈ U,∀λ ∈ F
we have that λw ∈ U . So U is a subspace of V .

We notate U by U ≤ V .

For some examples

(i) 
x
y
z

 ∈ R3 : x+ y + z = t

 ⊆ R3,

for fixed t ∈ R is a subspace of R3 iff t = 0.

(ii) Take RR as all the functions from R to R then the set of continuous functions is a subspace.

(iii) Also we have that C∞(R), the set of infintely differentiable functions from R to R is a
subspace of RR and the subspace of continuous functions.

(iv) A further subspace of all of those subspaces is the set of polynomial functions.

Lemma. For U,W ≤ V we have that U ∩W ≤ V .

Proof. We’ll use the subspace test. Both U,W are subspaces so they contain 0 hence 0 ∈ U ∩W
so U ∩ W is nonempty. Secondly take x, y ∈ U ∩ W with λ ∈ F. Then U ≤ V and x, y ∈ U
so x + λy ∈ U . Similarly with W so x + λy ∈ W hence we have that x + λy ∈ U ∩ W hence
U ∩W ≤ V

Remark. This does not apply for subspaces, in fact from IA Groups, we know it doesn’t even
hold for the underlying abelian group.

Definition. (Subspace sum) For U,W ≤ V , the subspace sum of U,W is

U +W = {u+ w : u ∈ U,w ∈ W}.

Lemma. If U,W ≤ V then U +W ≤ V .

Proof. Simple application of the subspace test.

Remark. U + W is the smallest subgroup of U,W in terms of inclusion, i.e. if K is such that
U ⊆ K and W ⊆ K then U +W ⊆ K.

1.2 Linear maps, isomorphisms, and quotients

Definition. (Linear map) For V , W F-vector spaces. A linear map from V to W is a
group homomorphism, φ, from (V,+) to (W,+) such that ∀v ∈ V

φ(λv) = λφ(v)

4



Equivalently to show any function α : V → W is a linear map we just need to show that
∀u,w ∈ V , ∀λ ∈ F we have

α(u+ λw) = α(u) + λα(w).

For some examples of linear maps

(i) V = Fn,W = Fm A ∈ Mm×n(F). Then let α : V → W be given by α(v) = Av. Then α is
linear.

(ii) α : C∞(R) → C∞(R) defined by taking the derivative.

(iii) α : C(R) → R defined by taking the integral from 0 to 1.

(iv) X any nonempty set, x0 ∈ X,

α : FX → F
f → f(x0)

(v) For any V,W the identity mapping from V to V is linear and so is the zero map from V
to W .

(vi) The composition of two linear maps is linear.

(vii) For a non-example squaring in R is not linear. Similiarly adding constants is not linear,
since linear maps preserve the zero vector.

Definition. (Isomorphism) A linear map α : V → W is an isomorphism if it is bijective.
We say that V and W are isomorphic, if there exists an isomorphism from V → W and
denote this by V ∼= W .

An example is the vector space V = F4 and W = M2×2(F) we can define the map

α : V → W
a
b
c
d

 →
(
a b
c d

)

Then α is an isomorphism.

Proposition. If α : V → W is an isomorphism then α−1 : W → V is also an isomorph-
ism.

Proof. Clearly α−1 is a bijection. We need to prove that α−1 is linear. Take w1, w2 ∈ W and
λ ∈ F. So we can write wi = α(vi) for i = 1, 2. Then

α−1(w1 + λw2) = α−1(α(v1) + λα(v2)) = α−1(α(v1 + λv2)) = v1 + λv2 = α−1(w1) + λα−1(w2)

. Hence α−1 is linear, so α−1 is an isomorphism.
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Definition. (Kernal) Let V,W be F-vector spaces. Then the kernal of the linear map
α : V → W is

ker(α) = {v ∈ V : α(v) = 0W } ⊆ V

Definition. (Image) Let V,W be F-vector spaces. Then the image of a linear map α :
V → W is

im(α) = {α(v) : v ∈ V } ⊆ W

Lemma. For a linear map α : V → W the following hold.
(i) kerα ≤ V and imα ≤ W
(ii) α is surjective if and only if imα = W
(iii) α is injective if and only if kerα = {0V }

Proof. 0V + 0V = 0V , so applying α to both sides any using the fact that α is linear gives that
α(0V ) = 0W . So kerα is nonempty. The rest of the proof is a simple application of the subspace
test.
The second statement is immediate from the definition.
For the final statement suppose α injective. Suppose v ∈ kerα. Then α(v) = 0W = α(0w) so
v = 0V by injectivity. Hence kerα is trivial. Conversely suppose that kerα = {0V } Let u, v ∈ V
and suppose that α(u) = α(v). The α(u− v) = 0W , so u− v ∈ kerα, so u = v.

For V a F-vector space, W ≤ V write

V

W
= {v +W : v ∈ V }

as the left cosets of W in V . Recall that two cosets v + V and u+W are the same coset if and
only if v − u ∈ W .

Proposition. V/W is an F-vector space under operations

(u+W ) + (v +W ) = (u+ v) +W

λ(v +W ) = (λv) +W

We call V/W the quotient space of V by W .

Proof. The proof is long and requires a lot of vector space axioms so we’ll just sketch out the
proof.
We check that operations are well-defined, so for u, u, v, v ∈ V and λ ∈ F if

u+W = u+W, v +W = v +W

then
(u+ v) +W = (u+ w) +W

and
(λu) +W = (λu) +W

The vector space axioms are inherited from V .
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Proposition. (Quotient map) The function πW : V → V
W called a quotient map is given

by
πW (v) = v +W

is a well-defined, surjective, linear map with kerπW = W .

Proof. Surjectivity is clear. For linearity let u, v ∈ V and λ ∈ F. Then

πW (u+ λv) = (u+ λv) +W

= (u+W ) + (λv +W )

= (u+W ) + λ(v +W )

= πW (u) + λπW (v)

For v ∈ V , we have that v ∈ kerπW ⇐⇒ πW (v) = 0V/W . So v + W = 0V + W so finally
v = v − 0V ∈ W .

Theorem. (First isomorphism theorem) Let V,W be F-vector spaces and α : V → W
linear. Then there is an isomorphism

α :
V

kerα
→ imα

given by α(v + kerα) = α(v)

Proof. For u, v ∈ V ,

u+K = v = K ⇐⇒ u− v ∈ K ⇐⇒ α(u− v) = 0W ⇐⇒ α(u) = α(v) ⇐⇒ α(u+ kerα) = α(v + kerα)

The forward direction shows that α is well-defined, and the converse shows that α is injective.
For surjectivity given w ∈ imα, there exists some v ∈ V s.t. w = α(v). Then w = α(v + kerα).
Finally for linearity given u, v ∈ V , λ ∈ F,

α((u+ kerα) + λ(v + kerα)) = α((u+ λv) + kerα)

= α(u+ λv)

= α(u) + λα(v)

= α(u+ kerα) + λα(v + kerα)

So α is linear hence is an isomorphism

1.3 Basis

Definition. (Span) Let V be a F-vector space. Then the span of some subset S ⊆ V is

⟨S⟩ =

{∑
s∈S

λs · s : λs ∈ F

}

where
∑

denotes finite sums. An expression the form above is called a linear combination
of S.
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We say that S spans V if ⟨S⟩ = V

Definition. (Finite-dimensional) For a vector space V we say that it is finite-dimensional
if there exists a finite spanning set.
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